Friday, November 9, 2018

Journal of the American Killifish Association

Fry care and feeding

Developed eggs are taken from the petri dishes and placed in a portion of peat sufficient to form a 5 to 10 mm layer at the bottom of a hatching container. Fresh water is added to the peat and eggs. I use RO water that is at room temperature. The peat with eggs is swirled, large clumps of peat broken up, and left to stand overnight (I normally hatch eggs in the evening). In the morning the fry are removed to a new container. To collect the fry the water of the hatching container can be poured into the fry-rearing container. Most fry will flow out with the water. The remaining fry can be spooned out of the shallow water of the hatching container. The hatching container is refilled and stirred. This is repeated three times over three days. On the fourth day the peat is redried. The same portion of peat is reused multiple times with developed eggs added to it and then inundated. Once the fry are removed from the peat they can be fed. Feeding the fry over the peat can result in uneaten food dying in the peat, fouling it, and killing any remaining eggs in the peat. The fry are large enough to eat newly hatched Artemia nauplii and microworms (Panagrellus species). I have found that a mixed diet of fresh Artemia nauplii and enriched microworms or small Grindal worms is able to get the fish to sexable size in three to four weeks, and that growth on the mixed diet was faster than on Artemia nauplii alone (Figure 4). A diet of unenriched Artemia alone does not achieve this rate of growth. Artemia can be enriched using a product such as SELCO2 .

Microworms have high levels of fats, especially arachidonic and gammalinolenic acid (Table 2) that are needed for growth and nervous system development. The use of microworms on their own is not recommended due to the low fiber content of the worms which could cause intestinal issues.


Apistogramma sp. “Maulbruter”, the one and only

The Mouthbrooder were well conditioned upon a diet that consisted primarily of live foods such as Grindal worm, Daphnia, brine shrimp (Artemia) nauplii, and whiteworm. These live foods were offered twice daily and eagerly accepted, along with occasional offerings of dry granulated foods.
https://www.freewebs.com/microman1/documents/2007%20Breeze,M.Apisto.sp.Maulbruter.pdf

Performance of juvenile angelfish Pterophyllum scalare fed with the oligochaetes Enchytraeus buchholzi. (Grindal Worm )

Abstract

The angel fish Pterophyllum scalare is one of the main species of ornamental interest and widely exploited in Colombia for export. Objective. To evaluate the influence on growth and survival of juvenile P. scalare veil variety fed with Enchytraeus buchholzi. Materials and methods. Ten juveniles per fish tank were randomly distributed among nine fish tanks and then treated with three different diets (D1, D2 and D3): commercial feed containing 45% of crude protein (CP) (D1); commercial feed containing 45% of CP + E. buchholzi with 11.6% of CP (D2) and E. buchholzi alone with 11.6% of CP (D3). Animals were fed during 28 days and final weight (FW), final standard length (FSL), weight gain (WG), gain in standard length (GSL), specific growth rate (SGR), and survival were measured. Results. Significant differences were observed (p <0.05) for the variables FW and FSL. Individuals fed with diet D2 showed higher FW and FSL than those fed with diet D1. The best growth performance was in overall obtained with D2 and were not significantly different (p >0.05) to those observed in juveniles fed with D3. Conclusions. Based upon our results, we recommend E. buchholzi to be used as a supplement to the artificial diet instead of a diet on its own. The adequate proportion in the diet must be known for its optimal use.Key words: growth, live food, angelfish, survival.

The reproduction of Enchytraeus sp.--technical improvement for the counting of juveniles.

Abstract

Soil-dwelling annelids of the genus Enchytraeus are used in ecotoxicology for testing of chemicals mixed in artificial soil or for testing of wastes and soils of unknown quality. ISO 16387 describes a method for determining the effects of substances or contaminated soils on survival and reproduction of Enchytraeus albidus or of the smaller species Enchytraeus buchholzi or Enchy-traeus crypticus. After the total test duration of 6 (or 4) weeks, the juveniles hatched in the meantime are counted. There are several possible extraction techniques, which are always followed by counting the juveniles by hand, but none of them seems easy to handle. We proposed a new modification of the worm extraction method using flotation of fixed and stained juveniles followed by taking a photograph. The digital image of the juveniles is evaluated by computer processing. It makes the counting of juveniles much easier and less labor intensive.
PMID:
 
24026638
 
DOI:
 
10.1007/s10661-013-3409-7

Salamanders feeding

Caudata (Urodela)

Eric J. Baitchman, Timothy A. Herman, in Fowler's Zoo and Wild Animal Medicine, Volume 8, 2015

Feeding

Most salamanders are eager and enthusiastic feeders so long as the appropriate food items are provided. A salamander that frequently refuses food is likely suffering from compromised health or an inadequate environment. Unlike most frog species, many salamanders use olfactory cues in conjunction with movement to detect food. As a result, some species (typically aquatic taxa) will feed on nonliving foods, including frozen thawed insect larvae and even commercially available pelleted foods. Many aquatic salamanders and larvae use a lateral line system, similar to that of fish, to detect movement of prey underwater. By and large, live moving food items are more readily detected and eaten by all salamanders. Many caudates have occasionally been documented to eat other salamanders, and the risk of consumption of smaller taxa or conspecifics should be considered in husbandry.
A broad diversity of invertebrates comprises the staple diet of most salamander species. Earthworms and nightcrawlers (Lumbricus terrestris and others) are an excellent food source for many terrestrial and aquatic taxa, although the “red wiggler” (Eisenia foetida) sold for bait and composting may be refused because of its production of yellow defensive secretions. Smaller worm species that may be used for larval and adult salamander food include California blackworms (Lumbriculus variegatus), tubifex worms (Tubifex spp.), whiteworms (Enchytraeus albidus), Grindal worms (Enchytraeus buchholzi), and microworms (Panagrellus spp.). Insects provide the staple diet of most terrestrial salamanders. In captivity, the most readily available and useful feeder insects include the domestic cricket (Acheta domestica), wax moth larvae (Galleria mellonella), house fly larvae (Musca domestica), fruit flies (Drosophila melanogaster and D. hydei), bean beetles (Callosobruchus maculatus), terrestrial isopods (woodlice), and springtails. Aquatic insect larvae form an important dietary component of many salamander larvae, although their availability is limited in captivity. Fly larvae such as bloodworms (family Chironomidae) and glassworms (family Chaoboridae) are occasionally available at pet stores, live or frozen as food for tropical fish. Mosquito larvae (family Culicidae) and other aquatic insect larvae may be locally collected for salamander food.

Performance ofjuvenile angelfish Pterophyllum scalare fed with the oligochaetes Enchytraeus buchholzi (Grindal Worm )

Universitas Scientiarum

Print version ISSN 0122-7483

Abstract

JIMENEZ-ROJAS, Jhon EdisonALMECIGA-DIAZ, Paola Andrea  and  HERAZO-DUARTE, Diego Mauricio. Performance ofjuvenile angelfish Pterophyllum scalare fed with the oligochaetes Enchytraeus buchholzi. Univ. Sci. [online]. 2012, vol.17, n.1, pp.28-34. ISSN 0122-7483.
The angel fish Pterophyllum scalare is one of the main species of ornamental interest and widely exploited in Colombia for export. Objective. To evaluate the influence on growth and survival of juvenile P. scalare veil variety fed with Enchytraeus buchholzi. Materials and methods. Ten juveniles per fish tank were randomly distributed among nine fish tanks and then treated with three different diets (D1, D2 and D3): commercial feed containing 45% of crude protein (CP) (D1); commercial feed containing 45% of CP + E. buchholzi with 11.6% of CP (D2) and E. buchholzi alone with 11.6% of CP (D3). Animals were fed during 28 days and final weight (FW), final standard length (FSL), weight gain (WG), gain in standard length (GSL), specific growth rate (SGR), and survival were measured. Results. Significant differences were observed (p <0.05) for the variables FW and FSL. Individuals fed with diet D2 showed higher FW and FSL than those fed with diet D1. The best growth performance was in overall obtained with D2 and were not significantly different (p >0.05) to those observed in juveniles fed with D3. Conclusions. Based upon our results, we recommend E. buchholzi to be used as a supplement to the artificial diet instead of a diet on its own. The adequate proportion in the diet must be known for its optimal use.
Keywords : growth; live food; angelfish; survival.

Wednesday, September 26, 2018

纳米银生命 Nano Silver , 抗菌剂 - 预防和治疗 各种 病毒和细菌引起的疾病和"绝症"

蒙古人爱用银碗盛马奶来招待客人,以表示对客人的友谊象银子那样纯洁,象马奶那样洁白。奇怪的是,银碗好像有什么魔术似的,牛奶、食物一放在银碗里面,它的保存时间就会长得多。用银壶盛放的饮水,甚至可以保持几个月也不腐败。这是怎么回事呢?一般人都认为,银子是不会溶解于水的东西,其实,世界上绝对不溶于水的东西,几乎是没有的。银子和水会面以后,总会有微量的银进入水中,成为银离子。银离子是各种细菌的死对头,一升水中只要有五百亿分之一克的银离子,就足以叫细菌一命呜呼了。没有细菌兴风作很,食物自然就不容易腐败了。

中国航天员杨利伟及俄罗斯宇航员在太空的饮用水均用银离子消毒,而俄罗斯宇航关在太空中最长滞留400余天,都是用银离子安全消毒。非典(SARS)期间,美国政府向本国人推荐首选银为消毒产品。


由于纳米银的广谱抗菌性,并拥有强效杀菌能力,常被误认为有毒有害金属。据世界卫生组织相关数据,饮用水中最大容许银离子浓度为0.1ppm;美国食品药物管理局(FDA)认为,成人饮食中银的每日容许摄入量为3-5ppm。

银用来作为天然强力抗生素已经几千年了。古希腊人和世界上其它民族都用银镶嵌在餐具上。美国西部开荒者在没有电冰箱的年代,用一枚银元放在牛奶中保鲜。银的一个重要特点就是,可以在不到6分钟时间内杀灭接触到的细菌。圣经时代的牧羊人,为了保护“甜水”,经常将银块沉入井底。中国皇帝吃的每一道菜都放有一块银盘。
银早是公认的强效杀毒抗菌剂,100多年来的临床和实验室研究证明,银非常安全;理论和实践证明,在相同浓度的条件下,银微粒越小,杀菌效果越好。古代就开始运用,现在已经广范应用于宠物、医疗设备、个人卫生、公共场所、食品等行业的杀菌消毒。近年才开始尝试应用在水产/家禽/农业等更多方面领域并取得成功。



添加奈米银于水产饲料或养殖池水中的好处
(1) 观赏鱼虾生病率大幅下降,可治好许多传统抗菌剂治不好的病,如虹彩病毒和白斑病。可杀死所有水中的病毒和不好的细菌,任何坏菌皆可杀。
(2) 鱼苗&虾苗存活率可翻倍,例如从20%提高到40-60%以上。大幅提高存活率
(3) 添加非常微量即有效,效果胜过市面上所有的杀菌剂。


通常一种抗生素只能杀死2-6种不同的细菌或微菌,而银可杀死3000多种细菌、微菌和病毒。超活性纳米银杀菌液,由国内外检测单位验证可杀死金黄色葡萄球菌、大肠杆菌、绿脓杆菌、白色念球菌、溶藻弧菌、肠炎弧菌、爱德华氏菌、产气单胞菌等,而且不会产生耐药性。

马来西亚养殖业者要购买请联系017-5522128,或者点击这里下单👇
https://shopee.com.my/zegwei/1417618320?version=de2e7e6ac4b9e2d06981f7bdf2af4d82


--------------------

一、认识纳米银 纳米银:就是将粒径做到纳米级的金属单质。

1纳米(nm)=十亿分之一米
二、纳米银主要特性 A、
广抑菌、抗菌、杀菌;能有效杀死和抑制650多种病菌、病毒
B、无抗药性
C、
环保:绿色环保,对人畜无毒无害无副作用;
D、安全: 安全性高、耐热性好、抗菌范围广、持续杀菌的有效期长。
E持久:是长效抗菌剂,非抗生素类抗菌剂,属于无机抗菌系列,不产生耐药性。
用途:强效杀菌、持久抗菌,对大肠杆菌、金黄色葡萄球菌、白色念珠菌、绿脓杆菌、枯草芽孢、黑曲霉等的杀菌率均达99.99%以上,同时安全、无刺激性、有效浓度低、性质稳定、无腐蚀性、操作简单,是一种新型杀菌抗菌剂,可广泛应用于宠物、医疗设备、个人卫生、公共场所、食品等行业的杀菌消毒。 三、纳米银的主要优势 纳米银胶体这种新型杀菌剂是由纳米级银离子组成,它不同于目前所有的抗感染药物,是一种非抗生素类的杀菌剂,具有广谱、无耐药性、不受酸碱值影响等多种性能,经中科院、中国医学科学院、美国南加州医学院等权威机构检测,它对大肠杆菌、金黄色葡萄球菌等数十种致病微生物都有强烈抑制和杀灭作用,能有效杀灭多种致病病菌。而CS药物的临床应用表明,该抗菌素解决了以前其他抗生素所无法回避的耐药性、不能同时杀灭多种细菌等问题,而且在杀菌的同时,还可以有效促进组织的修复和再生,尤其是对物理治疗后的创伤愈合有较好的作用。 纳米银胶体对常用药物耐药菌的杀灭率非常高,针对变形杆菌是左氧氟沙星的3.2倍,是头孢噻肟的10倍;针对产气杆菌是哌拉西林的10倍,是左氧氟沙星的1.6倍,是阿米卡星的10倍;针对溶血性链球菌是红霉素的4.3倍,针对阴沟肠杆菌是哌拉西林的10倍,是头孢噻肟的10倍。离子的作用可持续存在,它不会气化,因此一次加入长期有效。一般只要补充消耗的离子,就可以实现系统杀菌效果。 四、纳米银的具体抗菌杀菌步骤:
第一步:纳米银颗粒与病原菌的细胞膜(壁)结合后,进入菌体;
第二步:迅速与氧代谢酶的巯基结合,使病原菌呼吸酶失活;
第三步:病原菌呼吸代谢被阻断,窒息而死;
第四步:细菌细胞膜破裂,纳米银从病原体中释放出来。
以上这四个步骤过程,均在很短时间内完成。
五、纳米银与常规杀菌剂的区别 1、广谱杀菌:纳米银颗粒直接进入菌体与氧代谢酶(-SH)结合,使菌体窒息而死的独特作用机制,可杀死与其接触的大多数细菌、真菌、霉菌、孢子等微生物。经国内八大权威机构研究发现:其对耐药病原菌如耐药大肠杆菌、耐药金葡萄球菌、耐药绿脓杆菌、化脓链球菌、耐药肠球菌,厌氧菌等有全面的抗菌活性;对烧烫伤及创伤表面常见的细菌如金黄色葡萄球菌、大肠杆菌、绿脓杆菌、白色念珠菌及其它G+、G-性致病菌都有杀菌作用;对沙眼衣原体、引起性传播性疾病的淋球菌也有强大的杀菌作用。 2、强效杀菌:据研究发现,A g可在数分钟内杀死650多种细菌。纳米银颗粒与病原菌的细胞壁/膜结合后,能直接进入菌体、迅速与氧代谢酶的巯基(-SH)结合,使酶失活,阻断呼吸代谢使其窒息而死。独特的杀菌机理,使得纳米银颗粒在低浓度就可迅速杀死致病菌。 3、渗透性强:纳米银颗粒具有超强的渗透性,可迅速渗入皮下2mm杀菌,对普通细菌、顽固细菌、耐药细菌以及真菌引起的较深处的组织感染均有良好的杀菌作用。 4、促进愈合:改善创伤周围组织的微循环,有效地激活并促进组织细胞的生长,加速伤口的愈合,减少疤痕的生成。 5、抗菌持久:纳米银颗粒利用专利技术生产,外有一层保护膜,在人体内能逐渐释放,所以抗菌效果持久。 6、安全性高:早在明代,中国的《本草纲目》中也有“生银,味辛,寒,无毒”的记载,李时珍说,“银本无毒,其毒则诸物之毒也”。“银通过阻断微生物的呼吸酶系统(阻断其能量产生)来杀灭微生物,但对人体细胞没有负面影响……几个世纪以来银的使用证明了银对人体组织是无毒的,毒性是由用于传输银的结合物质引起的,比如硝酸和磺胺嘧啶。” 人们针对银的安全性进行了大量的动物实验,经试验考察发现小鼠在口服最大耐受量925mg/kg,即相当于临床使用剂量的4625倍时,无任何毒性反应,在兔的皮肤刺激实验中,也没有发现任何刺激反应,其独特的杀菌机理在杀菌的同时不会对人体组织细胞产生作用。 1990年,美国毒物与疾病登记处及美国公共卫生局委托Clement国际公司进行了银毒性的调查,内容涉及银的吸收、分布、代谢、排泄及其对健康的影响,根据该研究,至今还没有外用银引起人毒性反应或影响免疫系统、心血管系统、生殖系统的功能以及发育和遗传毒性的报道。 100多年来的临床和实验室研究证明,银非常安全。 7、无耐药性:纳米银颗粒独特抗菌机理可迅速直接杀死细菌,使其丧失繁殖能力,因此,无法生产耐药性的下一代。 理论和实践证明,在相同浓度的条件下:银胶体中的银微粒越小,杀菌效果越好。在国内已公布的专利中,关于如何获得高质量的银胶体的电路和相关技术很少见。即使有的专利给出了一些具体电路,但对于如何生成高质量、高效杀菌力的胶体的完整装置和正确的操作程序等技术,未见于公开文献。这会给使用者造成困难和导致失效。只有掌握了完整的、周密的电解电路设计技术和正确的操作程序,才能保证获得足够多的纳米银微粒,减少较大的银原子团,使获得的银胶体具有优良的杀菌性能。有了这种胶体,就可广泛应用于各种医疗保健卫生事业中,就有可能制造出种类繁多、应用各异的杀菌制剂、药剂、保健材料,衣物、建材、日用电器、工业产品等等。这是应用银于医学医药和保健卫生的关键。也是研究本项目的根本目的所在。 六、纳米银的抗菌机理
一)是纳米银由于其结构单元尺寸介于宏观物质和微观原子和分子之间,表现出特别的表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应,可以轻易地进入病原体;

二)是纳米银粒子尺寸小,表面所占的体积百分数大,表面的键态和电子态与颗粒内部不同,表面原子配位不全等导致表面的活性位置增加,具备了作为抗菌剂的基本条件;

三)是具有很强穿透力,能全面充分接触并攻击病原体,从而发挥更强的生物效应,具有安全性高,抗菌范围广,持续杀菌时间长等优点。纳米银的抗菌性能尤其对致病的的杆菌、球菌、丝菌的杀灭作用远远大于传统的银离子杀菌剂。纳米银微粒可杀死细菌、真菌、支原体、衣原体等致病微生物。
七、生活中纳米银胶体的杀菌作用 银用来作为天然强力抗生素已经几千年了。古希腊人和世界上其它民族都用银镶嵌在餐具上。美国西部开荒者在没有电冰箱的年代,用一枚银元放在牛奶中保鲜。银的一个重要特点就是,可以在不到6分钟时间内杀灭接触到的细菌。圣经时代的牧羊人,为了保护“甜水”,经常将银块沉入井底。中国皇帝吃的每一道菜都放有一块银盘。 纳米银胶体是用特殊的电磁处理,将微粒子银从金属银块上取出,导入悬浮液体中。纳米银胶体微粒子是用肉眼看不见的,它比人体细胞小500-1000倍,是高科技纳米的技术产品;它很容易被吸收和排出体外,能有效抓住所有单一细胞的细菌、病毒、真菌,使它们窒息;它不像一般抗生素只能杀6种细菌,却不能杀病毒;它能杀灭650多种导致疾病的细菌及病毒;它无毒无味无副作用,不含自由基,对人体细胞无害。纳米银胶体像催化剂、稳定剂,但又不是银的化合物,它是每个原子充了电的纯银微粒子。因为银不会对人体失效,对任何传染病都能治疗和防止。如果人体内含有足够的胶银,相当于人体有了第二个免疫系统。 中国航天员杨利伟及俄罗斯宇航员在太空的饮用水均用银离子消毒,而俄罗斯宇航关在太空中最长滞留400余天,都是用银离子安全消毒。非典(SARS)期间,美国政府向本国人推荐首选消毒产品 八、 对使用银器不容易腐败实例的认识 一般人都认为,银子是不会溶解于水的东西,其实,世界上绝对不溶于水的东西,几乎是没有的。银子和水会面以后,总会有微量的银进入水中,成为银离子。银离子是各种细菌的死对头,一升水中只要有五百亿分之一克的银离子,就足以叫细菌一命呜呼了。没有细菌兴风作很,食物自然就不容易腐败了。 实例:古埃及人早在两千多年前,就已经知道把银子覆盖在伤口上,可以杀菌,防止化脓。现在,人们利用银离子的强烈杀菌作用,用于医药方面,比如为了不让初生婴儿的眼睛沾染细菌,婴儿一出世,就用极稀的硝酸银或蛋白银溶液滴入眼睛,既不伤害眼睛,又能完成消毒的任务。 当你游泳以后,给眼睛滴入一滴棕色的蛋白银溶液。可以使你免除因游泳而害眼病。 现代医学也看中了银离子的杀菌本领,比如碘胺药中的磺胺嘧啶银,由于分子中有了银,使它的抗菌本领大大增强,当烧伤、烫伤病人的创面发生感染,特别是过去很难对付的绿脓杆菌感染时,使用磺胺嘧啶银能很好的控制感染,挽救病人的生命,使人类在对付创面感染的“战斗”中,增添了一种有效的“武器”。  
实例:公元前327年,杰出的希腊统帅、马其顿的亚历山大率领远征军征服了波斯。接着,雄心勃勃的亚历山大又带着这支战无不胜的军队侵入印度。看来,没有任何力量能够遏止这位所向披靡的年轻统帅,印度纳入横跨欧亚非三洲的马其顿王国的版图,只是时间问题了。然而天有不测风云,人有旦夕祸福。突然间希腊军队闹起了严重的胃肠疾病,病弱不堪的士兵骚动起来,要求返回故乡。实际上,患病的士兵是这样的多,以致这支军队已经完全丧失了战斗力。面临这种局面,好大喜功的亚历山大只得悻悻地下令退军。等希腊远征军退到巴比伦城时,这支军队只剩下了1万人,还不到出发时的三分之一,大部分士兵都病死在撤退途中了。令人不解的是,尽管军官们和士兵一样的行军作战,吃一样的伙食,可是死去的基本上都是士兵,希腊军队中的军官生病人数远比普通士兵少。这是为什么呢?直到亚历山大死后2000年,才有一位希腊学者揭开了这个谜:这仅仅在于军官和士兵饮水的杯子不同——当时希腊士兵用锡杯喝水,而指挥官用银杯喝水。
银子是人类最早使用的金属之一。提到这种金属的用途,人们首先想到的就是它可作为货币使用。如果说作为货币使用是银子非凡的“第一职业”的话,那它更广泛的“第二职业”大约就是做首饰了。由于银子的色泽漂亮,抗腐蚀能力强以及易于加工等特点,它不但成为制造首饰最重要的原料之一,而且还被用来制造食具、茶具、挂饰等。说到银子的“第三职业”,那就是它的消毒作用了,可一直未被人所瞩目。很久以来,它只是默默地为人类服务。直至今天,银子仍没有放弃这个光荣的“第三职业”。现在,人们将硝酸银溶液作为眼睛的消炎、收敛用药。在一些医院里,广泛使用着银纱布和银药棉,在这些纱布和药棉上,早已“涂”有一层银或洒上极细的胶态银粉,用它们敷在伤口上,有着很好的杀菌作用。 目前,广泛使用磺胺嘧啶银和氟哌酸银来治疗烧伤、烫伤以防止绿脓菌等细菌的繁衍。还有用1%的硝酸银水溶液做眼睛消毒水。用硝酸银氨水溶液治疗牙病。胶态银用于妇科洗涤消毒杀菌。载银活性炭广泛用于饮水消毒。还用氯化银作饮水消毒。 90年代末,市场上出现了抗菌除臭袜、内裤、抗菌陶瓷等。以载银磷酸锆等为代表的多孔离子交换结构材料应用较广泛,它对驹皮病菌以及所有能耐二甲氧苯青霉素Saureus之类的细菌和霉菌等具有很强的杀伤能力,日本食品研究实验室已证明它是抑制O-157E繁殖最有效的灭菌剂,它与合成纤维和聚乙烯(PE)、聚丙烯(PP)制品的结合性能良好,其制品需求日趋增长。
--------------------

高密度养殖环境下,养殖体容易因微生物感染而致病,时常需要利用氯、臭氧及二氧化氯等来杀死水中病原菌。据EST提供的资料显示,氯容易产生三氯甲烷等有毒物质,且消毒效果最差;臭氧虽是极佳的杀菌剂,但价格昂贵且对人体健康有毒性,再者倘若臭氧浓度过高,会导致海水产生溴氧化物,对鱼虾等生物具有极高的致死毒性;二氧化氯虽具有毒性低、稳定及高效杀菌的优点,但对幼苗、浮游生物的杀伤力很大,且会产生对人类健康有潜在影响的氯酸盐和亚氯酸盐。因此,如何解决在水产养殖中正确用药显得非常迫切。


我们的Sil-Life纳米银抗菌剂拥有全球最高高浓度10000ppm,银微粒5nm, 已成功应用于对虾、石斑鱼等高经济价值的养殖对象的养殖、苗种生产和活鱼运输等环节,用于取代以往养殖过程中的杀菌、抑菌药物,避免细菌受药物刺激变异后产生抗药性,以及发生药物残留等风险。
马来西亚养殖业者要购买请联系017-5522128,或者点击这里下单👇
https://shopee.com.my/zegwei/1417618320?version=de2e7e6ac4b9e2d06981f7bdf2af4d82

我们的产品优势:
1. 全世界最高浓度10000ppm
2. 高浓度比较下价格全世界最低!
3. 奈米化后高浓度(5nm粒径极细较果优)远胜市场上1000ppm的浓度纳米银(25nm粒径粗效果差),粒径粗细决定抗菌效果,5nm效果提升20倍。
4. 进口台湾制造,属于养殖业革命性之商品
5. 中国最大的鱼饲料厂海X集团4年使用下来安全无虞,已向我方大量采购7.5吨,国内外(台湾厦门海南岛广东印尼越南均有客户使用,且持续放量购买),已有20多间成功案例用于大型鱼虾养殖。
6. 大陆12千只小型养鸡场因病死亡率降低40%
7. 台湾有家小型养鸡场因病死亡率降低50%;鸡瘟爆发时,附近多间养鸡场中感染,只有这家安然度过。


水产和畜牧业的一些实际案例和资料详情👇
https://drive.google.com/file/d/13a99KOE3nVAd-Tv4NPS0fjceIkC8uPi_/view?usp=sharing

Nano Silver . PA Sil-Life - The market best AntiBacterial and AntiVirus product !

<Revolution Product>
Cure and preventions aquaculture multiple deadly disease included shrimp white spot, etc.

❤️PA SIL-LIFE
It can kill MOST kind of virus and bacteria that make fish and shrimp SICK with excellent performance. Boost survivor rate of fish & shrimp from 20% to 40%~60%. It will not affect the growth and survival of cultured organisms, there will be no problem of silver remain in muscle.

Extreme low dosage to get all advantages as above :
0.2g/1000kg of water.
🔥 Added-value is very high in this application.
The famous top 5 China HAIX group already bought X tons after 4-year long term testing.

ADVANTAGE :
✅World's only nano silver with 10,000ppm (stays in liquid form, will not solidify)
✅Could be applied to fishery, hatchery, poultry and agriculture farms.
✅Could be applied as feed additive to fishery, hatchery and poultry farms (suggested).
✅Could be applied directly to fishery, hatchery and agriculture farms.

🔥 Extremely effective against:*
1) Porcine Epidemic Disease (PED)
2) Mouth & Foot Disease
3) Avian Flu
4) White Spot Disease (Ich)
5) Red Spot Disease
6) Koi Herpesvirus Disease (KHV)
7) Other bacteria & virus
8 ) bad appetite Gastroenteritis

More detail check here:
https://drive.google.com/open?id=1jW12FenLOGe6txe3Ypu5-cE8XLlWHFmv

🔥 Selling Fast PM/whatsapp👇
✅Whatsapp Www.wasap.my/60175522128/buypeeosAquaticSil-LifeENGPM ✅Company :Peeos Aquatic
✅Shipping Worldwide
✅Wechat : zegwei

Saturday, July 7, 2018

The nematode Panagrellus redivivus as an alternative live feed for larval Penaeus indicus

The free-living nematode Panagrellus redivivus was used as a feed to replace microalgae during the protozoeal (PZ) stage of Penaeus indicus and Anemia nauplii during the mysis and early post-larval (PL) stages. The nematodes promoted higher survival and similar growth and development when fed as an Artemia replacement. Adequate feeding density of the nematodes was 30/ml during PZ stages and 60/ml during subsequent stages to metamorphosis. Larvae fed nematodes from the first feeding stage to PL displayed comparable survival (p lt 0.05) but lower growth and slower development than those fed algae plus Artemia (p lt 0.05). Provision of algae as a co-feed with the nematodes for 24 hours significantly improved the survival and growth during larval development (p lt 0.05). Larvae fed nematodes and algae from PZ1 to PZ2 had significantly higher trypsin activity than those fed nematodes alone (p lt 0.05). It is concluded that algal co-feed significantly induces endogenous enzymes in larvae, enhancing digestion of the nematodes. 

read more @ https://eurekamag.com/research/002/990/002990619.php

PENILAIAN NEMATOD PANAGRELLUS REDIVIVUS SEBAGAI MAKANAN LARVA LAMPAM JAWA, BARBODES GONIONOTUS

UNIVERSITI PUTRA MALAYSIA EVALUATION OF FREE-LIVING NEMATODE PANAGRELLUS REDIVIVUS AS A LIVE FOOD ORGANISM FOR SILVER BARB BARBODES GONIONOTUS LARVAE ABDOLSAMAD JAHANGARD FP 2003 7 EVALUATION OF FREE-LIVING N EMATODE PANAGRELLUS REDIVIVUS ASA LIVE FOOD ORGANISM FOR SILVER BARB BARBODES GONIONOTUS LARVAE By ABDOLSAMADJAHANGARD Thesis Su�mitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy March 2003 DEDICATION To my most beloved wife, Ladan, for all her understanding, patience and support during all difficulties and for her technical help during my study To my father and mother, for their support, principle guide and encouragement since my childhood To all scientists and researchers, who have contributed directly and indirectly in the quest of knowledge ii iii Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy EVALUATION OF FREE-LIVING N EMATODE PANAGRELLUS REDIVIVUS AS A LIVE FOOD ORGANISM FOR SILVER BARB BARBODES GONIONOTUS LARVAE By ABDOLSAMADJAHANGARD March 2003 Chairman: Associate Professor Dr. Mohd. Salleh Kamarudin Faculty: Agriculture A series of experiments were conducted to develop mass production and improve nutritional quality of free-living nematode Panagrellus redivivus. The performance of nematodes P. redivivus produced on different culture media on growth and survival of silver barb Barbodes gonionotus larvae were also studied. Prior to evaluation of P. redivivus as a larval live food organism, a study was conducted on the optimal stocking density of B. gonionotus larvae. Best larval growth and survival were obtained at 10 larvae L-1 for a 1 6-days rearing period. However, a range of 34-65 larvae L-1 was recommended for its commercial hatchery production. A comparative study on performance of nematode, rotifer, Moina and Artemia was carried out. B. gonionotus larvae fed with Artemia and iv nematode exhibited significantly (PO.05) effect on the biochemical composition and nutritional value of P. redivivus for silver barb P. gonionotus larvae. Another study was conducted to determine the effect of lipid enrichment on the production of P. redivivus. The results showed that the best lipid enrichment level for the maximum production of P. redivivus was 3.43%. The extremely low production of P. redivivus in unenriched medium suggested that lipid has an important role in reproduction, metabolism and as the main energy source. The results of a feeding trial showed that nematodes grown in media enriched with> 2.6% oil level were unsuitable for silver barb B. gonionotus larvae. Finally, this study demonstrated that lipid source has an enormous effect on production and fatty acid composition of P. redivivus. The highest production v was achieved when nematodes were grown on sunflower oil enriched medium, followed by those grown in corn, linseed, fish, bleached palm kernel and bleached palm oil enriched respectively. The fish feeding trial, however, demonstrated that silver barb B. gonionotus larvae had a high capability to utilize a wide range of lipid source and dietary fatty acids without any negative effect on its growth and survival. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah PENILAIAN NEMATOD PANAGRELLUS REDIVIVUS SEBAGAI MAKANAN LARVA LAMPAM JAWA, BARBODES GONIONOTUS Oleh ABDOLSAMADJAHANGARD Mac 2003 Pengerusi: Prof. Madya Dr. Mohd. Salleh Kamarudin Fakulti: Pertanian vi Beberapa eksperimen telah dilakukan bagi membangunkan pengeluaran dan peningkatan mutu pemakanan nematod Panagrellus redivivus secara besarbesaran. Prestasi pengeluaran nematod P. redivivus menggunakan media kultur yang berlainan terhadap pertumbuhan dan kemandirian larva lampam Jawa Barbodes gonionotus juga telah dikaji. Sebelum kajian penilaian P. redivivus dijalankan, satu kajian telah dilakukan untuk menentukan kadar perlepasan optimum larva B. gonionotus. Kadar perlepasan 10 larva L-1 telah memberi pertumbuhan dan kemandirian tertinggi dalam tempoh 16 hari pengkulturan. Kadar perlepasan 34-65 larva L-1 bagaimanapun telah disarankan untuk pengeluaran benih lampam Jawa secara komersial. vii Satu kajian perbandingan prestasi nematod, rotifer, Moina dan Artemia. telah dilakukan. Larva lampam Jawa yang diberi Artemia dan nematod menunjukkan pertumbuhan tertinggi (P<0.05), diikuti oleh ratifer dan Moina. Nematod didapati sesuai sebagai makanan larva lampam Jawa. Kajian selanjutnya menunjukkan 20 nematod mL- 1 adalah kadar pemberian makanan optimum bagi larva lampam Jawa pada kadar perlepasan 10 larva L-1 dalam tempoh 16 hari pengkulturan. Kajian ini juga menunjukkan 8% adalah paras optimum kanji dalam media bagi pengeluaran maksimum P. redivivus. Larva lampam Jawa yang diberi nematod yang dikultur menggunakan media 8% kanji juga menunjukkan pertumbuhan dan kemandirian yang tertinggi. Kajian selanjutnya menunjukkan sumber kanji dalam media mempengaruhi pengeluaran keseluruhan nematod P. redivivus. Kanji kentang merupakan sumber yang terbaik pagi pengeluaran nematod. 8agaimanapun sumber kanji didapati tidak mempengaruhi komposisi kimia dan nilai pemakanan P. redivivus terhadap larva lampam Jawa, B. gonionotus. Kajian selanjutnya telah dilakukan bagi menentukan kesan paras pengkayaan lipid dalam media terhadap pengeluaran P. redivivus. Keputusan menunjukkan paras pengkayaan lipid maksimum bagi pengeluaran P. redivivus adalah 3.43%. Pengeluaran yang amat rendah dalam media tanpa lipid menunjukkkan lipid berperanan penting dalam pembiakan, metabolisme dan sebagai sumber utama tenaga bagi nematod. Kajian juga menunjukkan nematod yang dikultur dalam media yang viii diperkaya dengan lipid melebihi >2.6% didapati tidak sesuai untuk larva B. gonionotus. Kajian juga menunjukkan sumber lipid mempunyai kesan penting terhadap pengeluaran dan komposisi asid lemak P. redivivus. Pengeluaran nematod tertinggi didapati apabila ia dikultur dalam media diperkaya dengan minyak bunga matahari, disusuli oleh minyak jagung, minyak bijan, ikan, isirong kelapa sawit diluntur dan kelapa sawit yang diluntur. Keputusan kajian pemberian makanan menunjukkan larva B. gonionotus memiliki keupayaan untuk menggunakan ranj sumber lipid dan asid lemak dietari yang luas tanpa sebarang kesan pada kemandirian dan pertumbuhannya. ix ACKNOWLEDGEMENTS First and foremost, I want to thank Associate Professor Dr. Mohd. Salleh Kamarudin, chairman of my advisory committee, for providing me with a wonderful opportunity to complete my doctoral studies under his exceptional guidance. Other than the provision of the necessary funding, this work would not have been possible without his patience, constant encouragement, guidance and knowledge. Through frequent meetings and his open door policy, Dr. Kamarudin made an immense contribution to this dissertation and my academic growth, as well as my professional and personal life. My sincerest appreciation is also extended to Dr. Che Roos Sa ad and Associate Professor Dr. Kamaruzaman Sijam, who are members of my supervisory committee, for their constructive suggestions and guidance during the study period. I am also grateful for their willingness to serve on my committee, provide me assistance whenever required, involvement in my oral qual ifying examination, and for reviewing this dissertation. I would like also to extend my most sincere gratitude and thanks to Assoc. Prof. Dr. Razak Alimon who provided me some laboratory facilities and cooperation during the course of the study. I would also like to extend my- appreciation and thanks to: • The European Union for providing the research grant (ERB1C1 8-CT 98- 0333) for this project; x • Dr. Manuele Ricci of BioTecnologie B.T. s.r.l. Pantalla di Todi, 06050 PG, Italy who provided me a training course relevant to my study and for his warm hospitality and continuous technical advices; • Dr. Paymon Roustaian, Dr. Hamid Rezai and Dr. Ehsan Kamrani for their sincere and deep friendship, scientific guidance and technical advices; • My laboratory mates in Aquatic Biotechnology Laboratory, Dr. Annie Christianus, Mannuel, Emil, Reza and Carina for their technical assistance during the conduct of this study; • Professor Abdul Rahman Abd. Razak for his advices and constructive criticism during the major part of my study period; • Mr. Kambiz Shamsi for his critical review and editorial assistance, Alireza for his valuable computer assistance and Yasmin for her support, encouragement, moral, spiritual, faith and concern during my study; • The staff of Aquatic Resources Technology Laboratory, Faculty of Agriculture, UPM especially Mr. Jasni for their valuable assistance; • Mr. Kavoos Kasbi for his financial support in the beginning of my study and Dr. Farshad Shishechian for his technical assistance; • My family and most of all, my brother Ali and sister Mahvash, for their love, understanding and encouragement, and my parents in-law for their moral support towards this achievement; Above all, to the GOD almighty for making this study poss·ible. xi I certify that an Examination Committee met on 19th March 2003 to conduct the final examination of Abdolsamad Jahangard on his Doctor of Philosophy thesis entitled "Evaluation of Free-living Nematode Panagrellus redivivus as a Live Food Organism for Silver Barb 8arbodes gonionofus Larvae" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows: Abdul Razak Alimon, Ph.D. Associate Professor, Faculty of Agriculture, Universiti Putra Malaysia, (Chairman) Mohd. Salleh Kamarudin, Ph.D. Associate Professor, Faculty of Agriculture, Universiti Putra Malaysia, (Member) Che Roos Saad, Ph.D. Lecturer, Faculty of Agriculture, Universiti Putra Malaysia, (Member) Kamaruzaman Sijam, Ph.D. Associate Professor, Faculty of Agriculture, Universiti Putra Malaysia, (Member) Alexendra James Anderson, Ph.D. School of Life Sciences, Queensland University of Technology, Brisbane, Australia, (Independent Examiner) GULAM RUSU Professor I Deputy School of Graduat Studies, Universiti Putra Malaysia Date: 2 1 MAY 2003 xii This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows: Mohd. Salleh Kamarudin, Ph.D. Associate Professor, Faculty of Agriculture, Universiti Putra Malaysia, (Chairman) Che Roos Saad, Ph.D. Lecturer, Faculty of Agriculture, U niversiti Putra Malaysia, (Member) Kamaruzaman Sijam, Ph.D. Associate Professor, Faculty of Agriculture, Universiti Putra Malaysia, (Member) -e -. i' � AINIIDERIS, Ph.D. Professor I Dean, School of Graduate Studies, Universiti Putra Malaysia, Date: 1 0 JUL 2003 xiii OECLARA TION I hereby declare that this thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions. """..,nan Jahangard Date: 5 MAY 2003 xiv TABLE OF CONTENTS DEDiCATION ...... ......... .................................. ................................................... ii ABSTRACT ............. ........... .......................... , ....... ............ ................ ................ iii ABSTRAK ............................. ............ ........ ..... ................... ....... .................. . ..... vi ACKNOWLEDGEMENTS ......... , ......... ... ..................... ........ ............................. ix APPROVAL SHEETS .... .................................................................................. xi DECLARATION .... .......... ............................................................................... xiii TABLE OF CONTENTS ................................................................................ xiv LIST OF TABLES ..... ......................... .......................................................... xviii LIST OF FIGURES ......................................................................................... xx LIST OF ABBREVIATIONS .......................................................................... xxii CHAPTER INTRODUCTION .................. . . ..................... . ................ ............................ 1 Background of the Study ...... . ... .... ... ... ......... ... .......... . ........ ..... .. ..... ....... . ... 1 Statement of Problem . ..................... . . ..................... . .............. ................... 3 The Significance of Study . . ................................... . .......... . .................. . ..... 5 Objectives . . ..... ..... ............. . . ..................................... .............. . ............... . .. 6 II LITERATURE REViEW ...... .................................................. . ................... 8 Free Living Nematode Panagrellus redivivus: Its Biology, Culture and Application ............... . ................................ . ....... ...... . ..... . ........................... 8 Biology ................. . ................................... ................ .................. 8 Growth and Development.. ..... . ..................................... . ............ 9 Population Growth .......... . ....... . ................................................ 10 Temperature ....... . ............. . .......... . . . ............ . ....... . ....... ... . . . . ...... 11 pH ..................... .............................. .............. . .... .. . .......... .. ....... 12 Osmotic Regulations .......................................... ............ . ......... 13 Light .. . .......... . . ...... .................. . . ........... . .............. ...... .............. . . 13 Oxygen .... . ..... . .......................... . ............... . .............................. . 13 Biochemical Composition and Nutritional Value ......... . ...... . .... 14 P. redivivus Culturel Production . . ................... . .... . . . ..... . ........... 15 Application of Nematode P. redivivus in Fish Larviculture ..... 18 Application of P. redivivus in Shrimp Larviculture ..... . . ............ 18 Enrichment with Different Lipid Sources . . .. . ........... . ........ ........ 19 Bioencapsulation of Drugs Using Nematode P. redivivus ....... 20 Silver Barb Barbodes gonionotus .......................................................... 21 Biology, Ecology and Culture .... ................ .. ...... . ..................... 21 Feed and Feeding .................................................................... 22 Larval N utrition ..... .. ............. .. .... ................. . . . . ............. .......... . ................ 23 Common Live Food Organisms for Larviculture ............. . ................... . .. 26 Rotifer ... . ....... ....... . ............. ..... . ..... ........................................... 27 Artemia .... . ................................................... ............................. 28 Moina ................................... . ................. . ........... ....... . .......... . ... 30 "I GENERAL METHODOLOGy ....................... ............... . .......................... 32 Location of the Study ........................ . ...................................... .. . ............ 32 Experimental Fish ................................. . ...................... . ................ . ......... 32 Mass Production of Live Food ........ . ........... ............................................ 33 xv Green Water ......................... ......................... . ........... .............. 34 Rotifer Culture ....................................... ................................... 34 Moina Culture ...... ......... . ........................................................... . 34 Artemia Preparation ......................................................... . ....... 35 Small Scale Nematode Culture (Petri dish Culture) ........... . .... 36 Mass Scale Nematode Culture (Axenic Culture Method) ........ 37 Experimental Set-up ......... ............ ......... ........ ........ ... ............. ..... ............ 39 Water Management ............. ....... . . .......................................................... 39 Samplings ............. ..... ............................................................................. 39 Proximate Analyses of Live Food and Fish Samples ............................ 40 Total Protein ................. ...... ....... ............................................... 40 Total Lipid ......... .......................... . . ....... . ....... . ........................... 40 Fatty Acids ............ . .............................. ............ ........................ 40 Carbohydrate ............... . . ........ .................................................. 41 Statistical Analyses ............ ........ ...... ............................. . ........ ...... .......... 42 IV EFFECTS OF STOCKING DENSITY ON GROWTH, SURVIVAL AND YIELD PRODUCTION OF SILVER BARB BARBODES GONIONOTUS LARVAE ...................... ........................................................... ................ 43 Introduction ..... ..................... ................................................................... 43 Materials and methods .................................................. ......................... 44 Experimental Design ....................................................................... 44 Larval Rearing ....... .......................................................................... 45 Survival, Growth and Yield ............................................................. 45 Water Quality ................... ............................................................... 46 Data Analysis ........................... ............. ............ .............................. 46 Results ................................................................................................... 47 Discussion .............................................................................................. 51 Conclusion .................................................... .......................................... 56 V EFFECTS OF FREE LIVING NEMATODE PANAGRELLUS REDIVIVUS AND SELECTED LIVE FOOD ORGANISMS ON GROWTH AND SURVIVAL OF SILVER BARB BARBODES GONIONOTUS (BLEEKER) LARVAE ................................................................................................. 57 Introduction ........... .................................. ................................................ 57 Materials and Methods ........ ...................................... , ............................ 59 Larval Rearing . . ............................... ................................................ 59 Survival, Growth and Yield ................................................... .......... 60 Biochemical Analysis ...................................................................... 61 Statistical Analysis ....................................... ................................... 61 Results ......................... ...................................... .................................... 62 Water Quality ........................................................... ....................... 62 Growth and Survival ............................. ........................................... 62 Biochemical Composition ................................................................ 65 Discussion .............................................................................................. 66 Conclusion .............................................................................................. 68 VI AN OPTIMAL FEEDING DENSITY OF FREE-LIVING NEMATODE PANAGRELLUS REDIVIVUS FOR SILVER BARB BARBODES GONIONOTUS (BLEEKER) LARVAE .......................... .......... ............... 69 Introduction .......... . .................................................................................. 69 xvi Materials and Methods ....... .................................... .......... ...................... 71 Spawning and I ncubation ............................ .................................... 71 Larval Rearing ................... ............ ............................... ................... 71 Feeding Trial ........ : .......................................................................... 71 Water Quality .............................................................. . . ............. . .... 72 Fish Growth and SurvivaL ........................................ . ...................... 72 Statistical Analysis ....................................................... ...... ............. 73 Results ..................... ....... .............................................. ........ ................. 73 Discussion ...................................... ....................... ............... .................. 77 Conclusion .............................................................................................. 82 VI I EFFECTS OF VARYING STARCH LEVEL ON THE PRODUCTION AND BIOCHEMICAL COMPOSITION OF FREE- LIVING NEMATODE PANAGRELLUS REDIVIVUS AND ITS EVALUATION USING SILVER BARB BARBODES GONIONOTUS (BLEEKER) LARVAE ................... 83 Introduction .................. ........................................................................... 83 Materials and Methods ........................................................................... 84 Nematode Culture ........................................................................... 84 Larval Rearing ............................................. .................................... 85 Water Qual ity ...................................................................... . ........... 86 Survival and Growth ............... ..................... ................... ................. 86 Biochemical Analysis ................ . ..... ... ....... ...... . ........ ........ ............... 87 Statistical Analysis ....... ............................................................ ....... 87 Results .................................................... . .............................................. 88 Nematode Production ..... . ............................................................... 88 Water Quality ....... : .......................................................................... 88 Survival and Growth of Larvae ........ ................. . ...... ................ ....... 89 Biochemical Composition ................................................................ 93 Discussion . . ....................................................... . ...... . . ............................ 97 Conclusion ................................................. ........................................... 100 VI II EFFECTS OF STARCH SOURCES ON THE PRODUCTION OF FREELIVING NEMATODE PANAGRELLUS REDIVI VUS AND ITS NUTRITIONAL VALUE FOR SILVER BARB BARBODES GONIONOTUS LARVAE .................... ................................................. 101 Introduction ................................................................ ; .......................... 101 Materials and Methods ......................................................................... 102 Nematode Culture ....................................................... .................. 102 Larval Rearing ........................................... .................................... 103 Water Quality ....................................... ...................... . ............ ...... 103 Survival and Growth ............................ .............................. ............ 104 Viscosity Measurement. ...................................................... . ......... 104 Biochemical Analysis ........................................ . ..... . ..................... 105 Statistical Analysis . .-...................................................................... 105 Results ........................................................ ......................................... 106 Physical and biochemical properties of starches .......................... 106 Nematode Production and Biochemical Composition .................. 106 Survival and Growth of Fish Larvae ................. ................... .......... 109 Water Quality ...... .......................................................................... 1 12 Biochemical Composition ................................................. . ............ 112 Discussion .... . ..................................................... .................................. 1 13 xvi i Conclusion ............................................................................................ 115 IX EFFECTS OF LIPID ENRICHMENT LEVEL ON PRODUCTI ON AND B IOCHEMICAL COMPISITON OF FREEE-LiVING NEMATODES PANAGRELLUS REDIVIVUS AND ITS EVALUATION USING SILVER BARB BARBODES GONIONOTUS (BLEEKER) LARVAE ..... . ........ ... 1 1 6 Introduction ................... . .... . ...... .............. ......... ... . . .............. . ................. 1 1 6 Materials and Methods ................... . . ..... . . ..... ........ ...... . . ......... .. . . ......... .. 1 1 7 Nematode Culture ............... ............. ........ ..................................... 1 1 7 Larval Rearing .... ............................... .................... ........................ 118 Water Quality . . ........................................... . .................... . ............. 1 1 9 Fish Survival and Growth ............ .......... .................. ...... . ........ ....... 1 1 9 Biochemical Analysis .............. . ..... ... ............................................. 1 20 Statistical Analysis .... .................... . ............................................... 1 20 Results .................................... . .............. . . ..... . .............. ........................ 121 Nematode Production ..... ....... ..................... ............ ... ................... 1 21 Survival and Growth of Fish Larvae ..................................... . ........ 1 22 Water Quality ............ .............. ...................................................... 1 24 Biochemical Composition . ............... ............ . .......................... . ...... 1 26 Discussion ........................................... ..................... ............. . . ............. 131 Conclusion .................... . ................................. . . ................... . . ................ 1 35 X EFFECTS OF LIPID ENRICHMENT USING DIFFERENT OIL SOU RCES ON PRODUCTION AND BIOCHEMICAL COMPOSITION OF FREE-LIVING NEMATODE PANARELLUS REDIVIVUS AND ITS NUTRITIONAL EVALUATION USING SILVER BARB BARBODES GONIONOTUS, (BLEEKER) LARVAE ................................................ 1 36 Introduction ................................................................ ............ ............... 1 36 Materials and Methods ................... ...................................................... 1 38 Nematode Culture ....... .................................................................. 1 38 Larval Rearing ............................... ................................................ 1 39 Chemical analysis .................................................................... . .... 1 40 Statistical Analysis .................................................................. ...... 1 40 Results ................................................................................................. 1 42 Nematode Production ........... ................................................. ....... 1 42 Survival and Growth of Larvae .... ...... ........................................... 1 44 Proximate Composition of Nematodes ......................................... 147 Proximate Composition of Fish ................ ................. .................... 1 47 Fatty Acid Composition of Nematode ..... ...................................... 1 50 Fatty Acid Composition of Fish ........................... . ......................... 1 50 Discussion ................................. ........................................................... 1 53 Conclusion ......................... . ....... ........................................................... 1 58 XI GENERAL DiSCUSSiON ......... ............................................................ 1 59 REFERENCES ............................................................................................ 1 65 APPENDiCES ........................................ . ........... ....... ......... .......................... 1 89 ViTA ..... ............................... ......................................................................... 1 93 xviii LIST OF TABLES Table Page 1. Physical-chemical parameters in rearing tanks of B. gonionotus larvae grown at different stocking density, during 16 days of rearing period . ..................................................................................................... 47 2. Survival, final body weight, final total length, body weight gain, total length gain, specific growth rate and total wet weight yield of B. gonionotus . ............. . ........ .. ..................... ...... ............... ... . ....................... 48 3. Mean total length, total width and biochemical composition of different live food organisms . ............................. .................... ......... ....... 60 4. Survival and growth parameters of silver barb B. gonionotus larvae fed with different live foods for a period of 21-days . .............................. 63 5. Protein and lipid composition of fish larvae B. gonionotus fed on different live food organisms . .................. .......................... ..................... 66 6. Survival, final body weight, final total length and final yield of silver barb B. gonionotus fed on different nematode density ................... ... ... . 74 7. Summary of multiple regression analysis of survival and growth of fish (dependent variables) versus feed concentration, a mmonia and pH in culture tanks. ......... ............. ..... ...... .................. ... ............ ... ... .... ... 77 8. Optimal feeding densities of different live foods used by d ifferent authors for larval rearing of fish ........................... ................................... 81 9. Mean production, multiplication factor and medium cost of nematode P. redivivus grown on varying levels of starch . .......................... ............ 88 1 0. Survival, specific growth rate, total length, body weight, total length gain and weight gain of B. gonionotus larvae fed on nematodes grown on different starch level for a period of 1 6-days . . ............ ..... .. ..... 91 1 1 . Proximate composition (% OW) of P. redivivus cultured on d ifferent levels of starch media . ................. : ............................. : ........ ...... ..... ......... 93 1 2. Proximate composition (% OW) of B. gonionotus larvae fed with nematodes grown on different starch levels . ......................................... 94 13. Proximate composition (% dry matter) and viscosity (x1 03 CPS) of different starch sources . .............................. .......................... ............... 105 14. Mean production, multiplication factor and medium cost of nematodes P. redivivus grown on different starch sources for a period of 1 4-days ................................. ................................................. 1 06 1 5. Proximate composition (% dry matter) of P. redivivus cultured on media of different starch sources . ...................... .................................. 1 08 1 6. Mean survival, total length, body weight, length gain, weight gain and specific growth rate of B. gonionotus larvae fed on nematodes grown on different starch sources for a period of 1 6-days ... ........................... 1 09 xix 17. Proximate composition (% dry matter) of B. gonionotus larvae fed with nematodes grown in different starch sources .. .... . .............. . ...... . .. 111 18. Mean production, multiplication factor and medium cost of nematode P. redivivus grow on various lipid levels for a period of 14-days . ........ 120 19. Survival, growth and yield production of B. gonionotus larvae fed on different level of lipid-enriched nematodes reared for a period of 16 days . ..................................................................................................... 122 20. Biochemical composition of nematode P. redivivus cultured on media of different levels of lipid enrichment.. .................................................. 126 21. Biochemical composition of B. gonionotus larvae fed on nematodes P. redivivus grown on media of different levels of lipid enrichment. .... 127 22. Results of multiple regression analysis between survival and growth of fish (Dependent variables) and dietary nutritional factors ................ 130 23. Iodine value and fatty acid compositions of different lipid sources used in the experiment ......................................................................... 140 24. Mean production, multiplication factor and medium cost for nematode P. redivivus grow in enriched media of various oil sources for a period of 14-days . ............................................................................... 142 25. Multiple regression analysis between production of free-living nematodes Panagrelfus redivivus (dependent variable) and characteristics of lipid sources . ............................................................ 142 26. Survival, mean body length, mean body weight, length gain, weight gain, specific growth rate production of B. gonionotus larvae, fed on nematodes grown on enriched media of different oil sources for a period of 16-days .......... , ....................................................................... 145 28. Proximate composition of B. gonionotus larvae fed on nematodes P. redivivus grown on media enriched with different oil sources .............. 148 29. Fatty acid compositions (percent of total FAME) of nematodes grown in media enriched with different oil sources ......................................... 150 30. Fatty acid composition (percent of total FAME) of fish fed with nematodes grown in enriched media of different oil sources ............... 151 xx LIST OF FIGURES Figure Page 1. Survival of silver barb B. gonionotus larvae reared at different stocking density over the 16-days experimental period . . ....................... 49 2. Changes in a) mean total length and b) mean body weight of B. gonionotus larvae reared in six different stocking densities for 16- days . ....................... .............. ....................... ...................... ...... ............. 50 3. Optimum stocking density of B. gonionotus larvae based on polynomial (second order) regression model (Zeitoun et al., 1976) of larval yield versus stocking density . .... .. ....................... ......... ................. 51 4. Optimum stocking density for hatchery production based on a) acceptable body weight and b) acceptable total length of B. gonionotus larvae . .................. ....................... .. ............... ..... ................... 55 5. Effects of nematodes and selected live food organisms on larval B. gonionotus yield. Means with different alphabetical letter are significantly different (P<0.05) . . ........................................ ...................... 64 6. Total length size frequency histograms of fish larvae fed on different live food organisms . .................................................. .......... .... ............... 65 7. Changes in a) total length b) body weight of silver barb B. gonionotus larvae fed on different nematode densities (nematodes mL·1) over a 16-days feeding trial ............................................. ............. ..... ................ 75 8. Survival of silver barb B. gonionotus larvae fed on different nematode densities (nematodes mL-1) over the 16-days experimental period . . ..... 76 9. Survival of B. gonionotus larvae fed on nematodes from various levels of starch during a 16-days trial... ............... .............. ... . . ................ 89 10. Changes in a) total length and b) total body weight of silver barb B. gonionotus fed on nematodes grown on different levels (%) of starch during a 16-days of feeding . . ... ............................................ ................... 90 11. Relationship between medium starch level and a) nematode carbohydrate content, b) nematode lipid content and c) nematodes energy content. ............ : .................................................. ..... .... .. .... . . ....... 95 12. Relationship between a) nematode lipid content and fish lipid content b) nematode energy content and fish energy content. .............. 96 13. Relationship between carbohydrate content (% DW) of starch sources and nematode production . . ......................... ............................ 107 14. Relationship between starch viscosity of starch sources and nematode production .. .................................... ...................................... 107 15. Changes in a) total body length b) body weight of silver barb B. gonionotus fed on nematodes grown on different starch sources for a 16-days trial. ................. ........ ..... ..... ...................... ..... ........................... 110 1 6. Polynomial (second order) regression model: lipid enrichment level vs P. redivivus multiplication factor for a period of 1 4-days culture xxi period ... ........ . . ...... . ..... ... ........ . ..... . . ... . . .... .... . .. .... ... ....... ... ................. ...... 1 21 1 7. Survival of B. gonionotus larvae fed with different lipid enrichment level of nematodes during a 1 6-days feeding trial. .............................. 1 23 1 8. Changes in a) total length b) body weight of silver barb B. gonionotus fed nematodes grown on different lipid enrichment level during a 1 6- days feeding trial. ................. ................................ ................................ 1 24 1 9. Relationships between medium lipid enrichment and a) nematode lipid content (% DW) b) nematode energy content c) nematode carbohydrate content (% DW) . . ................................................. ........... 1 28 20. Relationships between nematode lipid content and a) fish lipid contents b) fish energy content. ..................... ...................................... 1 29 21 . Optimal lipid enrichment level of P. redivivus for P. gonionotus larvae . .................................. .................... .... ......... ......... ............ ........... 1 33 22. Survival of B. gonionotus larvae fed with nematodes grown in enriched media of different oil sources during a 16 d feeding trial. ..... 1 43 23. Changes in growth a) total length b) total body weight of silver barb B. gonionotus fed on nematode grown in enriched media of different oil sources during a 1 6-days feeding trial . ........................................... 1 44 xxii LIST OF ABBREVIATIONS ANOVA Analysis of Variance AOAC Association of Official Analytical Chemist BW Body weight BSA Bovine Serum Albumin CHCI3 Chloroform CH30H Methanol CRD Complete Randomised Design DHA Decosahexanoeic acid DMRT Duncan Multiple Range Test OW Dry weight DO Dissolved oxygen EFA Essential fatty acid Expt. Experiment FAME Fatty acid methyl esters HCL Hydrochloric acid H2SO4 Sulphuric acid HUFA Highly unsaturated fatty acid M.F. Multiplication factor MSA Methanol sulphuric acid MUFA Mono unsaturated fatty acid N Normality NaCI Sodium chloride NaOH Sodium hydroxide NPK Nitrogen Potassium Phosphorous NPU Net protein utilization RGR Relative growth rate RPM Revolution per minute SAS Statistical analysis system SEAFDEC Southeast Asian Fisheries Development Centre SFA Saturated fatty acid SGR Specific growth rate SEM Standard error of mean TRT Treatment tJm Microgram UPM Universiti Putra Malaysia UV Ultra Violet YSI Yellow spring instrument xxiii 1 CHAPTER I INTRODUCTION Background of the Study Asia has the world's highest production and consumption of aquaculture products (Liao, 1 991 ). Similar to other Asian developing nations, seafood is also one of the major sources of dietary protein for Malaysians. Fish culture was introduced to Malaysia with the immigration of Chinese workers to Malaya. However, the industrial farming of several species of fish and shellfish in this country has recently and rapidly expanded due to technology advancement, government support, tropical condition and sufficient water sources (Endinkeau and Kiew, 1 993). Despite of rapid development in culture techniques, inadequate fry supply coupled with relatively h igh feed prices limits Malaysian aquaculture production (Ang, 1 993). Most of fish and shellfish hatcheries in Malaysia are very dependent on imported expensive Artemia cysts (USD 50-80kg- 1 ) as a main larval food source, which could cost up to 80% of the total production cost per se (Sorgeloos, 1 980). However, Artemia may not always be the best larval food for all species (Jones et a/. , 1 993). Therefore, cheaper alternative live food should be explored. Free-living nematode Panagrellus redivivus with its suitable wide size range, ease of culture, h igh n utritional value and low cost production (Fontaine et al. , 1 982; Kahan and Appel, 1 975; Kahan et al. , 1 980) has been found to be 

Read more at
http://psasir.upm.edu.my/id/eprint/10638/1/FP_2003_7_A.pdf